08-02-2022, 02:43 AM
Neuroscience has found that gestures are not merely important as tools of expression but as guides of cognition and perception.
The tendency to supplement communication with motion is universal, though the nuances of delivery vary slightly. In Papua New Guinea, for instance, people point with their noses and heads, while in Laos they sometimes use their lips. In Ghana, left-handed pointing can be taboo, while in Greece or Turkey forming a ring with your index finger and thumb to indicate everything is A-OK could get you in trouble.
Despite their variety, gestures can be loosely defined as movements used to reiterate or emphasize a message — whether that message is explicitly spoken or not. A gesture is a movement that “represents action,” but it can also convey abstract or metaphorical information. It is a tool we carry from a very old age, if not from birth; even children who are congenitally blind naturally gesture to some degree during speech. Everybody does it. And yet, few of us have stopped to give much thought to gesturing as a phenomenon — the neurobiology of it, its development, and its role in helping us understand others’ actions. As researchers delve further into our neural wiring, it’s becoming increasingly clear that gestures guide our perceptions just as perceptions guide our actions.
Gestures may be simple actions, but they don’t function in isolation. Research shows that gesture not only augments language, but also aids in its acquisition. In fact, the two may share some of the same neural systems. Acquiring gesture experience over the course of a lifetime may also help us intuit meaning from others’ motions. But whether individual cells or entire neural networks mediate our ability to decipher others’ actions is still up for debate.
When children are learning their first language, Macedonia argues, they absorb information with their entire bodies. A word like “onion,” for example, is tightly linked to all five senses: Onions have a bulbous shape, papery skin that rustles, a bitter tang and a tear-inducing odor when sliced. Even abstract concepts like “delight” have multisensory components, such as smiles, laughter and jumping for joy. To some extent, cognition is “embodied” — the brain’s activity can be modified by the body’s actions and experiences, and vice versa. It’s no wonder, then, that foreign words don’t stick if students are only listening, writing, practicing and repeating, because those verbal experiences are stripped of their sensory associations.
Macedonia has found that learners who reinforce new words by performing semantically related gestures engage their motor regions and improve recall. Don’t simply repeat the word “bridge”: Make an arch with your hands as you recite it. Pick up that suitcase, strum that guitar! Doing so wires the brain for retention, because words are labels for clusters of experiences acquired over a lifetime.
Multisensory learning allows words like “onion” to live in more than one place in the brain — they become distributed across entire networks. If one node decays due to neglect, another active node can restore it because they’re all connected. “Every node knows what the other nodes know,” Macedonia said.
https://www.quantamagazine.org/how-the-b...-20190325/
The tendency to supplement communication with motion is universal, though the nuances of delivery vary slightly. In Papua New Guinea, for instance, people point with their noses and heads, while in Laos they sometimes use their lips. In Ghana, left-handed pointing can be taboo, while in Greece or Turkey forming a ring with your index finger and thumb to indicate everything is A-OK could get you in trouble.
Despite their variety, gestures can be loosely defined as movements used to reiterate or emphasize a message — whether that message is explicitly spoken or not. A gesture is a movement that “represents action,” but it can also convey abstract or metaphorical information. It is a tool we carry from a very old age, if not from birth; even children who are congenitally blind naturally gesture to some degree during speech. Everybody does it. And yet, few of us have stopped to give much thought to gesturing as a phenomenon — the neurobiology of it, its development, and its role in helping us understand others’ actions. As researchers delve further into our neural wiring, it’s becoming increasingly clear that gestures guide our perceptions just as perceptions guide our actions.
Gestures may be simple actions, but they don’t function in isolation. Research shows that gesture not only augments language, but also aids in its acquisition. In fact, the two may share some of the same neural systems. Acquiring gesture experience over the course of a lifetime may also help us intuit meaning from others’ motions. But whether individual cells or entire neural networks mediate our ability to decipher others’ actions is still up for debate.
When children are learning their first language, Macedonia argues, they absorb information with their entire bodies. A word like “onion,” for example, is tightly linked to all five senses: Onions have a bulbous shape, papery skin that rustles, a bitter tang and a tear-inducing odor when sliced. Even abstract concepts like “delight” have multisensory components, such as smiles, laughter and jumping for joy. To some extent, cognition is “embodied” — the brain’s activity can be modified by the body’s actions and experiences, and vice versa. It’s no wonder, then, that foreign words don’t stick if students are only listening, writing, practicing and repeating, because those verbal experiences are stripped of their sensory associations.
Macedonia has found that learners who reinforce new words by performing semantically related gestures engage their motor regions and improve recall. Don’t simply repeat the word “bridge”: Make an arch with your hands as you recite it. Pick up that suitcase, strum that guitar! Doing so wires the brain for retention, because words are labels for clusters of experiences acquired over a lifetime.
Multisensory learning allows words like “onion” to live in more than one place in the brain — they become distributed across entire networks. If one node decays due to neglect, another active node can restore it because they’re all connected. “Every node knows what the other nodes know,” Macedonia said.
https://www.quantamagazine.org/how-the-b...-20190325/